Quite a crude way. There got to be better and elegant ways. This post is sort of a note to my future self.
TemplateMonad
seems to be the right way to do this, but
in this post it is not used. Maybe it'll help appreciate the utility of
TemplateMonad
.
Versions of software used:
—
I had an example inductive type:
Inductive C :=
| r : C
| g : nat -> C
| b : bool -> nat -> C.
And I needed to find a way to extract the constructors of this type as an AST (abstract syntax tree).
Template-Coq, which is part of the MetaCoq project, allows us to do this.
So the aim is to get a result like
[("r", astof(C));
("g", astof(nat -> C));
("b", astof(nat -> C))]
Template-Coq can do:
We're gonna need the quoting part.
Let's start. First, we 'quote' C
recursively (the
non-recursive quoting doesn't give as much level of detail) and store
its AST form in qC
:
From MetaCoq.Template Require Import utils All.
Require Import List String.
Import ListNotations MonadNotation.
MetaCoq Quote Recursively Definition qC := C.
qC
looks like
([(MPfile ["myfilename"], "C",
InductiveDecl
{|
ind_finite := Finite; (* Recursivity kind: Inductive. Not co-inductive *)
ind_npars := 0; (* No parameters *)
ind_params := []; (* No parameters *)
ind_bodies := [{|
ind_name := "C";
ind_type := tSort
(Universe.from_kernel_repr
(Level.lSet, false) []);
ind_kelim := InType;
ind_ctors := [("r", tRel 0, 0);
("g",
tProd nAnon
(tInd
{|
inductive_mind := (
MPfile
["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} [])
(tRel 1), 1);
("b",
tProd nAnon
(tInd
{|
inductive_mind := (
MPfile
["Datatypes"; "Init"; "Coq"],
"bool");
inductive_ind := 0 |} [])
(tProd nAnon
(tInd
{|
inductive_mind := (
MPfile
["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} [])
(tRel 2)), 2)];
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
(LevelSetProp.of_list [], ConstraintSet.empty);
ind_variance := None |});
(MPfile ["Datatypes"; "Init"; "Coq"], "bool",
InductiveDecl
{|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [{|
ind_name := "bool";
ind_type := tSort
(Universe.from_kernel_repr
(Level.lSet, false) []);
ind_kelim := InType;
ind_ctors := [("true", tRel 0, 0); ("false", tRel 0, 0)];
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
(LevelSetProp.of_list [], ConstraintSet.empty);
ind_variance := None |});
(MPfile ["Datatypes"; "Init"; "Coq"], "nat",
InductiveDecl
{|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [{|
ind_name := "nat";
ind_type := tSort
(Universe.from_kernel_repr
(Level.lSet, false) []);
ind_kelim := InType;
ind_ctors := [("O", tRel 0, 0);
("S", tProd nAnon (tRel 0) (tRel 1), 1)];
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
(LevelSetProp.of_list [], ConstraintSet.empty);
ind_variance := None |})],
tInd {| inductive_mind := (MPfile ["myfilename"], "C"); inductive_ind := 0 |} [])
: program
where "myfilename"
is the name of the source file.
Quite verbose, yes, but it's the AST of the Coq source, after all.
This quoted term that we got is of type program
which is
defined like
(* metacoq/template-coq/theories/Environment.v *)
Definition program : Type := global_env * term.
So here, the global_env
term is (skipping most parts of
as it has already been mentioned):
[(MPfile ["myfilename"], "C",
InductiveDecl
{|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [{|
...
...
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
(LevelSetProp.of_list [], ConstraintSet.empty);
ind_variance := None |});
(MPfile ["Datatypes"; "Init"; "Coq"], "bool",
InductiveDecl
{|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [{|
ind_name := "bool";
ind_type := tSort
(Universe.from_kernel_repr
(Level.lSet, false) []);
ind_kelim := InType;
ind_ctors := [("true", tRel 0, 0); ("false", tRel 0, 0)];
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
(LevelSetProp.of_list [], ConstraintSet.empty);
ind_variance := None |});
(MPfile ["Datatypes"; "Init"; "Coq"], "nat",
InductiveDecl
...
...
ind_variance := None |})].
and the term
term is:
= tInd
{|
inductive_mind := (MPfile ["myfilename"], "C");
inductive_ind := 0 |} []
: term
The constructors seem to be in the global_env
term.
Let's get the global_env
term from the
program
value:
Definition aux1 (p : program) : global_env := fst p.
Compute aux1 qC.
Within the global_env
term, the constructors appears to
be in the ind_bodies
field of the
inductiveDecl
record.
global_env
is defined like:
(* metacoq/template-coq/theories/Environment.v *)
Definition global_env : Type := list (kername * global_decl).
We need the first value in this list.
Could use List.hd
for that, but since
List.hd
is defined like
(* theories/Lists/List.v *)
Definition hd (A : Type) (default:A) (l:list A) :=
match l with
| [] => default
| x :: _ => x
end.
in a way that requires a default value, we need a default
(kername * global_decl)
value (the 'quest' to find default
values is included at the end of this post as an addendum).
Definition default_global_decl : global_decl :=
ConstantDecl (Build_constant_body
(tVar ""%string)
None
(Monomorphic_ctx
(LevelSet.Mkt []%list, ConstraintSet.Mkt []%list))).
Definition default_kername : kername :=
(MPfile []%list, ""%string).
Definition default_kg : (kername * global_decl) :=
(default_kername, default_global_decl).
Okay, now that we have got a default
(kername * global_decl)
as default_kg
, let's
get the first (kername * global_decl)
.
Definition aux2 (g : global_env) : (kername * global_decl) :=
List.hd default_kg g.
Compute aux2 (aux1 qC).
(*
= (MPfile ["myfilename"], "C",
InductiveDecl
{|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [{|
ind_name := "C";
ind_type := tSort
{|
Universe.t_set := {|
UnivExprSet.this := [UnivExpr.npe
(NoPropLevel.lSet, false)];
UnivExprSet.is_ok := UnivExprSet.Raw.singleton_ok
(UnivExpr.npe
(NoPropLevel.lSet, false)) |};
Universe.t_ne := eq_refl |};
ind_kelim := InType;
ind_ctors := [("r", tRel 0, 0);
...
...
];
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
({|
LevelSet.this := [];
LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |});
ind_variance := None |})
: kername × global_decl
*)
kername
is defined like
(* template-coq/theories/BasicAst.v *)
Definition kername : Set := modpath × ident.
So the (kername * global_decl)
is actually
(modpath * ident) * global_decl
which may also be written
like modpath * ident * global_decl
as coq tuples associate
to the left such that (1, 2, 3)
and
((1, 2), 3)
are same.
Check (1,2,3).
(* (1, 2, 3) : (nat × nat) × nat *)
Check ((1,2),3).
(* (1, 2, 3) : (nat × nat) × nat *)
In the output of aux2 (aux1 qC)
,
MPfile ["three"]
is the modpath
"C"
is the ident
InductiveDecl
is the
global_decl~
The constructors are in the global_decl
part.
Making a function aux3
to get the
global_decl
,
Definition aux3 (kg : kername * global_decl) : global_decl := snd kg.
Compute aux3 (aux2 (aux1 qC)).
(*
= InductiveDecl
{|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [{|
ind_name := "C";
ind_type := tSort
{|
Universe.t_set := {|
UnivExprSet.this := [UnivExpr.npe
(NoPropLevel.lSet, false)];
UnivExprSet.is_ok := UnivExprSet.Raw.singleton_ok
(UnivExpr.npe
(NoPropLevel.lSet, false)) |};
Universe.t_ne := eq_refl |};
ind_kelim := InType;
ind_ctors := [("r", tRel 0, 0);
("g",
tProd nAnon
(tInd
{|
inductive_mind := (
MPfile
["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} [])
(tRel 1), 1);
("b",
tProd nAnon
(tInd
{|
inductive_mind := (
MPfile
["Datatypes"; "Init"; "Coq"],
"bool");
inductive_ind := 0 |} [])
(tProd nAnon
(tInd
{|
inductive_mind := (
MPfile
["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} [])
(tRel 2)), 2)];
ind_projs := [] |}];
ind_universes := Monomorphic_ctx
({|
LevelSet.this := [];
LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |});
ind_variance := None |}
: global_decl
*)
The constructors are inside the ind_bodies
field of the
mutual_inductive_body
argument to
InductiveDecl
. ind_bodies
has a
list one_inductive_body
.
Definition aux4 (g : global_decl) : list one_inductive_body :=
match g with
| ConstantDecl _ => []%list
| InductiveDecl mib => mib.(ind_bodies) (* TODO Map *)
end.
Compute aux4 (aux3 (aux2 (aux1 qC))).
(*
= [{|
ind_name := "C";
ind_type := tSort
{|
Universe.t_set := {|
UnivExprSet.this := [UnivExpr.npe
(NoPropLevel.lSet, false)];
UnivExprSet.is_ok := UnivExprSet.Raw.singleton_ok
(UnivExpr.npe
(NoPropLevel.lSet, false)) |};
Universe.t_ne := eq_refl |};
ind_kelim := InType;
ind_ctors := [("r", tRel 0, 0);
("g",
tProd nAnon
(tInd
{|
inductive_mind := (MPfile
["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} [])
(tRel 1), 1);
("b",
tProd nAnon
(tInd
{|
inductive_mind := (MPfile
["Datatypes"; "Init"; "Coq"],
"bool");
inductive_ind := 0 |} [])
(tProd nAnon
(tInd
{|
inductive_mind := (MPfile
["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} [])
(tRel 2)), 2)];
ind_projs := [] |}]
: list one_inductive_body
*)
Now we are quite close to constructors, which are inside the
ind_ctors
field of the one_inductive_body
values.
Definition aux5 (oibs : list one_inductive_body)
: list (list (ident * term * nat)) :=
map (fun o:one_inductive_body => o.(ind_ctors)) oibs.
Compute aux5 (aux4 (aux3 (aux2 (aux1 qC)))). (* CONSTRUCTORS! *)
(*
= [[("r", tRel 0, 0);
("g",
tProd nAnon
(tInd
{|
inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0 |} []) (tRel 1), 1);
("b",
tProd nAnon
(tInd
{|
inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "bool");
inductive_ind := 0 |} [])
(tProd nAnon
(tInd
{|
inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} []) (tRel 2)), 2)]]
: list (list ((ident × term) × nat))
*)
Piecing all the 'aux
' functions together:
Definition aux (p : program) : list (list (ident * term * nat)) :=
let genv := fst p in
let kgd := List.hd default_kg genv in
let gd := snd kgd in
let oibs :=
match gd with
| ConstantDecl _ => []%list
| InductiveDecl mib => mib.(ind_bodies)
end in
map (fun o:one_inductive_body => o.(ind_ctors)) oibs.
Compute aux qC.
(*
= [[("r", tRel 0, 0);
("g",
tProd nAnon
(tInd
{|
inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "nat");
inductive_ind := 0 |} []) (tRel 1), 1);
("b",
tProd nAnon
(tInd
{|
inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"], "bool");
inductive_ind := 0 |} [])
(tProd nAnon
(tInd
{|
inductive_mind := (MPfile ["Datatypes"; "Init"; "Coq"],
"nat");
inductive_ind := 0 |} []) (tRel 2)), 2)]]
: list (list ((ident × term) × nat))
*)
Which is what we were after.
(Just for fun's sake, let me try this notation here.
Notation "f $ x" := (f x)
(at level 60, right associativity, only parsing).
Definition aux' (p : program) : list (list (ident * term * nat)) :=
let gd := snd $ List.hd default_kg $ (fst p) in
map (fun o:one_inductive_body => o.(ind_ctors))
match gd with
| ConstantDecl _ => []%list
| InductiveDecl mib => mib.(ind_bodies)
end.
Compute aux' qC.
But I had been warned that this can cause scope inference to break.
Okay, side-mission over.)
For use with List.hd
which requires a default value.
Being unfamiliar with the Template-Coq types when I used it for the first time, I found it helpful to write them down.
Still not sure if this was necessary, but as of writing this post, I don't know of any other way.
ident
ident
is same as string
and represents an
identifier.
(* template-coq/theories/BasicAst.v *)
Definition ident : Set := string.
modpath
Definition:
(* template-coq/theories/BasicAst.v *)
Inductive modpath : Set :=
| MPfile (dp : dirpath)
| MPbound (dp : dirpath) (id : ident) (i : nat)
| MPdot (mp : modpath) (id : ident).
Let's go with the simplest constructor, MPfile
.
Using a dummy dirpath
value,
Check MPfile []%list : modpath.
(*
MPfile [] : modpath
: modpath
*)
kername
Definition:
(* template-coq/theories/BasicAst.v *)
Definition kername : Set := modpath × ident.
Using dummy modpath
and ident
values (where
ident
is same as string
),
Check (MPfile []%list, ""%string) : kername.
(*
(MPfile [], "") : kername
: kername
*)
dirpath
Definition:
(* template-coq/theories/BasicAst.v *)
Definition dirpath : Set := list ident.
which means it is basically list string
.
A list! Easy. An empty list would do.
Check []%list : dirpath.
(*
[] : dirpath
: dirpath
*)
global_decl
Definition:
Inductive global_decl : Type :=
(* Represents declaration of constants, I guess *)
| ConstantDecl : constant_body -> global_decl
(* Represents declaration of inductive types, probably *)
| InductiveDecl : mutual_inductive_body -> global_decl.
Simplest constructor is ConstantDecl
, let's go with
that.
Using a dummy constant_body
value,
Check ConstantDecl (Build_constant_body (tVar ""%string) None
(Monomorphic_ctx ((LevelSet.Mkt []%list), (ConstraintSet.Mkt []%list)) : universes_decl)) : global_decl.
(*
ConstantDecl
{|
cst_type := tVar "";
cst_body := None;
cst_universes := Monomorphic_ctx
({|
LevelSet.this := [];
LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |})
:
universes_decl |}
:
global_decl
: global_decl
*)
constant_body
Definition:
Record constant_body : Type := Build_constant_body {
cst_type : term;
cst_body : option term;
cst_universes : universes_decl
}.
Simplest option
value is, of course,
None
.
Using dummy universe_decl
and terms
values
with this,
Check Build_constant_body (tVar ""%string) None
(Monomorphic_ctx ((LevelSet.Mkt []%list), (ConstraintSet.Mkt []%list)) : universes_decl) : constant_body.
(*
{|
cst_type := tVar "";
cst_body := None;
cst_universes := Monomorphic_ctx
({|
LevelSet.this := [];
LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |})
:
universes_decl |}
:
constant_body
: constant_body
*)
term
Definition:
Inductive term : Type :=
tRel : nat -> term
| tVar : ident -> term
| tEvar : nat -> list term -> term
| tSort : Universe.t -> term
| tCast : term -> cast_kind -> term -> term
| tProd : name -> term -> term -> term
| tLambda : name -> term -> term -> term
| tLetIn : name -> term -> term -> term -> term
| tApp : term -> list term -> term
| tConst : kername -> Instance.t -> term
| tInd : inductive -> Instance.t -> term
| tConstruct : inductive -> nat -> Instance.t -> term
| tCase : inductive × nat -> term -> term -> list (nat × term) -> term
| tProj : projection -> term -> term
| tFix : mfixpoint term -> nat -> term
| tCoFix : mfixpoint term -> nat -> term
Arguments tRel _%nat_scope
Arguments tEvar _%nat_scope _%list_scope
Arguments tApp _ _%list_scope
Arguments tConstruct _ _%nat_scope
Arguments tCase _ _ _ _%list_scope
Arguments tFix _ _%nat_scope
Arguments tCoFix _ _%nat_scope
tVar
seems simple enough.
Check (tVar ""%string) : term.
(*
tVar "" : term
: term
*)
universes_decl
Definition:
Inductive universes_decl : Type :=
Monomorphic_ctx : ContextSet.t -> universes_decl
| Polymorphic_ctx : AUContext.t -> universes_decl
Let's go with Monomorphic_ctx
(because monomorphic got
to be simpler than polymorphic, right?). Using a dummy
ContextSet.t
value,
Check Monomorphic_ctx ((LevelSet.Mkt []%list), (ConstraintSet.Mkt []%list)) : universes_decl.
(*
Monomorphic_ctx
({| LevelSet.this := []; LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |})
:
universes_decl
: universes_decl
*)
ContextSet.t
Definition:
ContextSet.t = LevelSet.t × ConstraintSet.t
: Type
Using dummy LevelSet.t
and ConstraintSet.t
values,
Check ((LevelSet.Mkt []%list), (ConstraintSet.Mkt []%list)) : ContextSet.t.
(*
({| LevelSet.this := []; LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |})
:
ContextSet.t
: ContextSet.t
*)
LevelSet.t
Definition:
LevelSet.t = LevelSet.t_
: Type
Using a dummy LevelSet.t_
value,
Check LevelSet.Mkt []%list : LevelSet.t.
(*
{| LevelSet.this := []; LevelSet.is_ok := LevelSet.Raw.empty_ok |}
:
LevelSet.t
: LevelSet.t
*)
LevelSet.t_
Definition:
Record t_ : Type := Mkt {
this : LevelSet.Raw.t;
is_ok : LevelSet.Raw.Ok this
}.
Arguments LevelSet.Mkt _ {is_ok}.
is_ok
is implicit. Using a random
LevelSet.Raw.t
,
Check LevelSet.Mkt []%list : LevelSet.t_.
(*
{| LevelSet.this := []; LevelSet.is_ok := LevelSet.Raw.empty_ok |}
:
LevelSet.t_
: LevelSet.t_
*)
LevelSet.Raw.t
LevelSet.Raw.t = list LevelSet.Raw.elt
: Type
A list. So we can stop here with a simple []%list
.
Check []%list : LevelSet.Raw.t.
(*
[] : LevelSet.Raw.t
: LevelSet.Raw.t
*)
ConstraintSet.t
Definition:
ConstraintSet.t = ConstraintSet.t_
: Type
Using dummy ConstraintSet.t_
value,
Check ConstraintSet.Mkt []%list : ConstraintSet.t.
(*
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |}
:
ConstraintSet.t
: ConstraintSet.t
*)
ConstraintSet.t_
Record t_ : Type := Mkt {
this : ConstraintSet.Raw.t;
is_ok : ConstraintSet.Raw.Ok this
}.
Arguments ConstraintSet.Mkt _ {is_ok}
is_ok
is implicit. Using a dummy
ConstraintSet.Raw.t
,
Check ConstraintSet.Mkt []%list : ConstraintSet.t_.
(*
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |}
:
ConstraintSet.t_
: ConstraintSet.t_
*)
ConstraintSet.Raw.t
ConstraintSet.Raw.t = list ConstraintSet.Raw.elt
: Type
A list!
Check []%list : ConstraintSet.Raw.t.
(*
[] : ConstraintSet.Raw.t
: ConstraintSet.Raw.t
*)
recursivity_kind
Definition:
Inductive recursivity_kind : Set :=
Finite : recursivity_kind
| CoFinite : recursivity_kind
| BiFinite : recursivity_kind
Going with Finite
.
Check Finite : recursivity_kind.
(*
Finite : recursivity_kind
: recursivity_kind
*)
mutual_inductive_body
Record mutual_inductive_body : Type := Build_mutual_inductive_body
{ ind_finite : recursivity_kind;
ind_npars : nat;
ind_params : context;
ind_bodies : list one_inductive_body;
ind_universes : universes_decl;
ind_variance : option (list Variance.t) }
Arguments Build_mutual_inductive_body _ _%nat_scope _ _%list_scope
Using dummy values,
Compute Build_mutual_inductive_body Finite 0 []%list []%list
(Monomorphic_ctx (LevelSet.Mkt []%list, ConstraintSet.Mkt []%list)) None.
(*
= {|
ind_finite := Finite;
ind_npars := 0;
ind_params := [];
ind_bodies := [];
ind_universes := Monomorphic_ctx
({|
LevelSet.this := [];
LevelSet.is_ok := LevelSet.Raw.empty_ok |},
{|
ConstraintSet.this := [];
ConstraintSet.is_ok := ConstraintSet.Raw.empty_ok |});
ind_variance := None |}
: mutual_inductive_body
*)
context
Definition:
context = list context_decl
: Type
List. Empty list would do.
Check []%list : context.
(*
[] : context
: context
*)
sort_family
Definition:
Inductive sort_family : Set :=
InProp : sort_family | InSet : sort_family | InType : sort_family
Any of the three would do. Let's go with InProp
.
Check InProp : sort_family.
(*
InProp : sort_family
: sort_family
*)
one_inductive_body
Definition:
Record one_inductive_body : Type := Build_one_inductive_body
{ ind_name : ident;
ind_type : term;
ind_kelim : sort_family;
ind_ctors : list ((ident × term) × nat);
ind_projs : list (ident × term) }
Arguments Build_one_inductive_body _ _ _ (_ _)%list_scope
Using dummy ident
, term
and
sort_family
values,
Check Build_one_inductive_body "None"%string (tVar "None"%string) InProp []%list []%list.
(*
{|
ind_name := "None";
ind_type := tVar "None";
ind_kelim := InProp;
ind_ctors := [];
ind_projs := [] |}
: one_inductive_body
*)
(This blog post was originally completed by 07 January 2022.)