⌠ 1
⎮xⁿ.dx = ───── xⁿ⁺¹ + C
⌡ (n+1)
⌠ 1
⎮───.dx = logx + C
⌡ x
⌠
⎮eˣ.dx = eˣ + C
⌡
⌠ ⌠ ⌠
⎮[f(x) ± g(x)].dx = ⎮f(x).dx ± ⎮g(x).dx
⌡ ⌡ ⌡
⌠
⎮sinx.dx = -cosx + C
⌡
⌠
⎮cosx.dx = sinx + C
⌡
⌠ ⌠ ⌠ ⎛⌠ ⎞
⎮u v dx = u⎮v dx - ⎮u' ⎜⎮v.dx⎟ . dx
⌡ ⌡ ⌡ ⎝⌡ ⎠
where u' = du/dx
To choose u (first function) and v (second function), use the 'ILATE' trick: -I: Integral -L: Logarithm -A: Algebraic -T: Trigonometric -E: Exponent
Example:
⌠
⎮x.cosx.dx
⌡
Algebraic and trigonometric parts. ILATE => A comes first.
ie,
- u = x
- v = cosx
⌠ ⌠dx ⎛⌠ ⎞
= x⎮cosx.dx - ⎮── ⎜⎮cosx.dx⎟ . dx
⌡ ⌡dx ⎝⌡ ⎠
⌠ ⎛⌠ ⎞
= x.sinx - ⎮ ⎜⎮cosx.dx⎟ . dx
⌡ ⎝⌡ ⎠
⌠
= x.sinx - ⎮sinx.dx
⌡
= x.sinx + cosx
Derivative of:
f(x).g(x)
with respect to x
is:
g.f'(x) + f.g(x)
Or in Leibniz's notation:
d ⎛ ⎞ df dg
─── ⎜f.g⎟ = g. ─── + f. ───
dx ⎝ ⎠ dx dx
Derivative of f(g(x))
with respect to x
is:
f'(g(x)) . g'(x)