#check Nat
[CommRing R]
: mention that R
is a
commutative ringnamespace <namespace-name>
open <namespace-name>
#check (0:ℕ)
#check (1:ℕ+)
#reduce 1+2
-- 3
#check 1+2
-- 1 + 2 : ℕ
-----------------------------------
constant p: ℕ.
#check p.prime
│ nat.prime p : Prop
def x:ℕ := 5
#reduce x.prime
│ irreducible 5
-----------------------------------
#print or
│ inductive or : Prop → Prop → Prop
│ constructors:
│ or.inl : ∀ {a b : Prop}, a → a ∨ b
│ or.inr : ∀ {a b : Prop}, b → a ∨ b
#print and.elim
│ theorem and.elim : ∀ {a b c : Prop}, a ∧ b → (a → b → c) → c :=
│ λ {a b c : Prop} (h₁ : a ∧ b) (h₂ : a → b → c), and.rec h₂ h₁
theorem or_intro_l (p q: Prop) : p → p ∨ q :=
show p ∨ q, from or.inl
From https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/?world=1&level=2
The comma tells Lean "I've finished writing this tactic now, please process it." Lean ignores newlines, but pays great attention to commas.
/-- comment --/
-- comment
Search
.Locate
equivalent?