https://plv.mpi-sws.org/coqdoc/iris/index.html https://plv.mpi-sws.org/semantics-course/
—
Seperation logic
Concurrent seperation logic
PCM: Partial Commutative Monoids
WP: Weakest Precondition
Resource algebras
OFE: Ordered Families of Equivalences
COFE: Complete OFE
FAA: Fetch-and-add
▶P: later
μr.P
Points-to connective (l ↦ v
)
l ↦ v
says that l
points to value
v
l
by the
expression under considerationSeparation conjunction (P ∗ Q
)
P
and
Q
Adequacy
Löb induction principle
Ghost state
heapGS
: type class providing some cameras ˡGhost variables
View shift
{P} e {v.Q}_ε
l ↦ v
: 'points-to' predicate
l
to
v
.iProp Σ
: Type of propositions
Σ: gFunctors
indicates available resources that
is part of current contextgFunctors
: a global list of resource algebras∗
is not idempotent
P ⊢ P * P
needn't be trueiSplitL H
: H
is given to left subgoal,
rest to the right subgoal
iSplitR
-∗
: 'magic wand' operator
P -∗ Q
is equivalent to P ⊢ Q
∗
is NOT asterisk!⊣⊢
: bi-entailment
P ⊣⊢ Q
means (P -∗ Q) ∧ (Q -∗ P)
P ∗ Q
: P
and Q
are
disjoint components that make up the state
P
and Q
x ↦ v1 ∗ y ↦ v2
: we can be sure that x
and
y
are not pointing to same location
P
and Q
⌜ p ⌝
turns a coq propositions p
into
an iris proposition
[⊢ p]
turns an iris proposition p
into
a coq proposition
#
can be used to convert a literal to a
val
val
coerces to
expr
iIntros "(Hx & Hy & Hz)"
can be used instead
of iIntros "[Hx [Hy Hz]]"
NONEV
and SOMEV
val
values.val
counterparts of SOME
and
NONE
Notation NONEV := (InjLV #())
Notation SOMEV x := (InjRV x)
InjLV
itself is a constructor of val
type:
Inductive expr : Set :=
Val : val → expr
| Var : string → expr
| Rec : binder → binder → expr → expr
| App : expr → expr → expr
| UnOp : un_op → expr → expr
| BinOp : bin_op → expr → expr → expr
| If : expr → expr → expr → expr
| Pair : expr → expr → expr
| Fst : expr → expr
| Snd : expr → expr
| InjL : expr → expr
| InjR : expr → expr
| Case : expr → expr → expr → expr
| AllocN : expr → expr → expr
| Free : expr → expr
| Load : expr → expr
| Store : expr → expr → expr
| CmpXchg : expr → expr → expr → expr
| Xchg : expr → expr → expr
| FAA : expr → expr → expr
| Fork : expr → expr
| NewProph : expr
| Resolve : expr → expr → expr → expr
with val : Set :=
LitV : base_lit → val
| RecV : binder → binder → expr → val
| PairV : val → val → val
| InjLV : val → val
| InjRV : val → val.
Fork e
: create a new thread to run e
e
is run only for its side effects. Its return value
cannot be usedFork
is the only primitive for concurrency in
HeapLangspawn
: takes a thunk that will be executed in a new
thread
spawn.join
par
: Run two threads in parallel
From iris.heap_lang Require Import lib.par
spawn
??e1 ||| e2
is notation for par e1 e2
e1
and e2
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/proof_mode.md
i
iIntros "H"
instead of intros H
iApply "H"
instead of apply H
iStartProof
P1 ⊢ Q1 P2 ⊢ Q2
----------------------
P1 ∗ P2 ⊢ Q1 ∗ Q2
–
{P} e {w. Q}
---------------- Frame rule
{P*R} e {w. Q*R}
------------------ Val
{True} v {w. w==v}
---------------------- Alloc
{True} ref(v) {l. l↦v}
------------------------ Load
{l↦v} !l {w. w==v * l↦v}
--------------- Store
{l↦v} l←w {l↦w}
Relevance of frame rule:
HeapLang: an ML-like language that comes with iris.
#
#4
, #true
Fst
, Snd
SOME
, NONE
if: #true then #() else #false
is vaildval
%V
expr
%E
loc
Non-recursive:
(* add5 := λx. x+5 *)
λ: "x", "x" + #5
(* compose := λx. x+5 *)
λ: "f" "g", (λ: "x", "g" ("f" "x"))
Recursive:
ref
use does this:
l
: !l
l
with another value
v
: l <- v
let "v" := ref (#0) in
"v"
expr
eval
with a fuel parametereval 10 expvar
where 10
is the
fuelinl _
if result could be obtained. Otherwise
inr _
Not native, but available by means of notations that desugars to lambda abstractions.
Example:
let: "a" := #4 in
let: "b" := #2 in
"a" + "b".
WP e {{ v, Φ v }}
is the weakest precondition such
that
e
would produce a
value v
such that Φ v
is trueφ
is a proposition{{ v, Φ v }}
is the post conditionExample from here:
Section Proof.
Context `{heapGS Σ}.
Section list.
Context `{heapGS Σ}.
Example arith : expr := #1 + #2 + #3 + #4 + #5.
Lemma arith_spec : ⊢ WP arith {{ v, ⌜v = #15⌝ }}.
Proof.
unfold arith.
by wp_pures.
Qed.
End Proof.
{{{ P }}} e {{{ RET v, Q }}}
desugars to
∀ Φ, P -∗ (Q -∗ Φ v) -∗ WP e {{ v, Φ v }}
This is logically equivalent to
P -∗ WP e {{ x, x = v ∗ Q }}
https://gitlab.mpi-sws.org/iris/iris/-/blob/master/docs/heap_lang.md#tactics
These tactics work when goal is like WP e @ E {{ Q }}
??
λ:
!x
with v
if
there is a x ↦ v
in assumptionp <- v
to context as
p ↦ v
wplam
"Hx" : x ↦ v1
"Hy" : y ↦ v2
"Post" : ▷ (x ↦ v2 ∗ y ↦ v1 -∗ Φ #())
--------------------------------------∗
WP (λ: "x" "y", let: "tmp" := ! "x" in "x" <- "y";; "y" <- "tmp")%V #x #y
{{ v, Φ v }}
becomes
"Hx" : x ↦ v1
"Hy" : y ↦ v2
"Post" : x ↦ v2 ∗ y ↦ v1 -∗ Φ #()
--------------------------------------∗
WP let: "y" := #y in let: "tmp" := ! #x in #x <- "y";; "y" <- "tmp"
{{ v, Φ v }}
wpstore
--------------------------------------□
"Hp" : p ↦ (#x, v)
"Hl" : is_list l v
"Post" : (∃ p0 : loc, ⌜InjRV #p = InjRV #p0⌝ ∗
∃ v' : val, p0 ↦ (#(n + x), v') ∗ is_list (map (Z.add n) l) v') -∗
Φ #()
--------------------------------------∗
WP #p <- (#x + #n, v);; inc_list #n v {{ v, Φ v }}
becomes
--------------------------------------□
"Hp" : p ↦ (#(x + n), v)
"Hl" : is_list l v
"Post" : (∃ p0 : loc, ⌜InjRV #p = InjRV #p0⌝ ∗
∃ v' : val, p0 ↦ (#(n + x), v') ∗ is_list (map (Z.add n) l) v') -∗
Φ #()
--------------------------------------∗
WP inc_list #n v {{ v, Φ v }}
iris_unstable
package.
exec
function with a fuel parameter:
Compute (exec 10 exprn)
iIntros "%Φ [Hx Hy] Post".
iIntros (Φ) "[Hx Hy] Post"
%->
|={⊤}=>
l ↦ v
being a precondition for e
means
that e
has ownership of l
.
Concurrency:
iCheck
to see types of terms?